Random access memory

RAM



Example of writable volatile random-access memory: SynchronousDynamic RAM modules, primarily used as main memory in personal computers, workstations, and servers.
Random-access memory (RAM /ræm/) is a form of computer data storage which storesdata and machine code currently being used. A random-access memory device allows dataitems to be read or written in almost the same amount of time irrespective of the physical location of data inside the memory. In contrast, with other direct-access data storage media such as hard disks, CD-RWs,DVD-RWs and the older magnetic tapes anddrum memory, the time required to read and write data items varies significantly depending on their physical locations on the recording medium, due to mechanical limitations such as media rotation speeds and arm movement.
RAM contains multiplexing anddemultiplexing circuitry, to connect the data lines to the addressed storage for reading or writing the entry. Usually more than one bit of storage is accessed by the same address, and RAM devices often have multiple data lines and are said to be '8-bit' or '16-bit' etc. devices.
In today's technology, random-access memory takes the form of integrated circuits. RAM is normally associated with volatiletypes of memory (such as DRAM modules), where stored information is lost if power is removed, although non-volatile RAM has also been developed.[1] Other types of non-volatile memories exist that allow random access for read operations, but either do not allow write operations or have other kinds of limitations on them. These include most types of ROMand a type of flash memory called NOR-Flash.
Integrated-circuit RAM chips came into the market in the early 1970s, with the first commercially available DRAM chip, the Intel 1103, introduced in October 1970.[2]

History

Types of random-access memory

The two widely used forms of modern RAM are static RAM (SRAM) and dynamic RAM(DRAM). In SRAM, a bit of data is stored using the state of a six transistor memory cell. This form of RAM is more expensive to produce, but is generally faster and requires less dynamic power than DRAM. In modern computers, SRAM is often used as cache memory for the CPU. DRAM stores a bit of data using a transistor and capacitor pair, which together comprise a DRAM cell. The capacitor holds a high or low charge (1 or 0, respectively), and the transistor acts as a switch that lets the control circuitry on the chip read the capacitor's state of charge or change it. As this form of memory is less expensive to produce than static RAM, it is the predominant form of computer memory used in modern computers.
Both static and dynamic RAM are consideredvolatile, as their state is lost or reset when power is removed from the system. By contrast, read-only memory (ROM) stores data by permanently enabling or disabling selected transistors, such that the memory cannot be altered. Writeable variants of ROM (such as EEPROM and flash memory) share properties of both ROM and RAM, enabling data to persist without power and to be updated without requiring special equipment. These persistent forms of semiconductor ROM include USB flash drives, memory cards for cameras and portable devices, and solid-state drives. ECC memory (which can be either SRAM or DRAM) includes special circuitry to detect and/or correct random faults (memory errors) in the stored data, using parity bits or error correction codes.
In general, the term RAM refers solely to solid-state memory devices (either DRAM or SRAM), and more specifically the main memory in most computers. In optical storage, the term DVD-RAM is somewhat of a misnomer since, unlike CD-RW or DVD-RW it does not need to be erased before reuse. Nevertheless, a DVD-RAM behaves much like a hard disc drive if somewhat slower.

Memory cell

Addressing

Memory hierarchy

Other uses of RAM

Laptop RAM
In addition to serving as temporary storage and working space for the operating system and applications, RAM is used in numerous other ways.

Virtual memory

Most modern operating systems employ a method of extending RAM capacity, known as "virtual memory". A portion of the computer'shard drive is set aside for a paging file or ascratch partition, and the combination of physical RAM and the paging file form the system's total memory. (For example, if a computer has 2 GB of RAM and a 1 GB page file, the operating system has 3 GB total memory available to it.) When the system runs low on physical memory, it can "swap" portions of RAM to the paging file to make room for new data, as well as to read previously swapped information back into RAM. Excessive use of this mechanism results in thrashing and generally hampers overall system performance, mainly because hard drives are far slower than RAM.

RAM disk

Software can "partition" a portion of a computer's RAM, allowing it to act as a much faster hard drive that is called a RAM disk. A RAM disk loses the stored data when the computer is shut down, unless memory is arranged to have a standby battery source.

Shadow RAM

Sometimes, the contents of a relatively slow ROM chip are copied to read/write memory to allow for shorter access times. The ROM chip is then disabled while the initialized memory locations are switched in on the same block of addresses (often write-protected). This process, sometimes called shadowing, is fairly common in both computers andembedded systems.
As a common example, the BIOS in typical personal computers often has an option called “use shadow BIOS” or similar. When enabled, functions relying on data from the BIOS’s ROM will instead use DRAM locations (most can also toggle shadowing of video card ROM or other ROM sections). Depending on the system, this may not result in increased performance, and may cause incompatibilities. For example, some hardware may be inaccessible to theoperating system if shadow RAM is used. On some systems the benefit may be hypothetical because the BIOS is not used after booting in favor of direct hardware access. Free memory is reduced by the size of the shadowed ROMs.[9]

Recent developments

Several new types of non-volatile RAM, which will preserve data while powered down, are under development. The technologies used include carbon nanotubes and approaches utilizing Tunnel magnetoresistance. Amongst the 1st generation MRAM, a 128 KiB(128 × 210 bytes) chip was manufactured with 0.18 Âµm technology in the summer of 2003.[citation needed] In June 2004, Infineon Technologies unveiled a 16 MiB (16 × 220bytes) prototype again based on 0.18 Âµm technology. There are two 2nd generation techniques currently in development: thermal-assisted switching (TAS)[10] which is being developed by Crocus Technology, and spin-transfer torque (STT) on which Crocus, Hynix,IBM, and several other companies are working.[11] Nantero built a functioning carbon nanotube memory prototype 10 GiB (10 × 230bytes) array in 2004. Whether some of these technologies will be able to eventually take a significant market share from either DRAM, SRAM, or flash-memory technology, however, remains to be seen.
Since 2006, "solid-state drives" (based on flash memory) with capacities exceeding 256 gigabytes and performance far exceeding traditional disks have become available. This development has started to blur the definition between traditional random-access memory and "disks", dramatically reducing the difference in performance.
Some kinds of random-access memory, such as "EcoRAM", are specifically designed forserver farms, where low power consumptionis more important than speed.[12]

Memory wall

The "memory wall" is the growing disparity of speed between CPU and memory outside the CPU chip. An important reason for this disparity is the limited communication bandwidth beyond chip boundaries, which is also referred to as bandwidth wall. From 1986 to 2000, CPU speed improved at an annual rate of 55% while memory speed only improved at 10%. Given these trends, it was expected that memory latency would become an overwhelming bottleneck in computer performance.[13]
CPU speed improvements slowed significantly partly due to major physical barriers and partly because current CPU designs have already hit the memory wall in some sense. Intel summarized these causes in a 2005 document.[14]
“First of all, as chip geometries shrink and clock frequencies rise, the transistor leakage current increases, leading to excess power consumption and heat... Secondly, the advantages of higher clock speeds are in part negated by memory latency, since memory access times have not been able to keep pace with increasing clock frequencies. Third, for certain applications, traditional serial architectures are becoming less efficient as processors get faster (due to the so-called Von Neumann bottleneck), further undercutting any gains that frequency increases might otherwise buy. In addition, partly due to limitations in the means of producing inductance within solid state devices, resistance-capacitance(RC) delays in signal transmission are growing as feature sizes shrink, imposing an additional bottleneck that frequency increases don't address.”
The RC delays in signal transmission were also noted in Clock Rate versus IPC: The End of the Road for Conventional Microarchitectures which projects a maximum of 12.5% average annual CPU performance improvement between 2000 and 2014.
A different concept is the processor-memory performance gap, which can be addressed by3D integrated circuits that reduce the distance between the logic and memory aspects that are further apart in a 2D chip.[15] Memory subsystem design requires a focus on the gap, which is widening over time.[16] The main method of bridging the gap is the use ofcaches; small amounts of high-speed memory that houses recent operations and instructions nearby the processor, speeding up the execution of those operations or instructions in cases where they are called upon frequently. Multiple levels of caching have been developed in order to deal with the widening of the gap, and the performance of high-speed modern computers are reliant on evolving caching techniques.[17] These can prevent the loss of processor performance, as it takes less time to perform the computation it has been initiated to complete.[18] There can be up to a 53% difference between the growth in speed of processor speeds and the lagging speed of main memory access.[19]
In contrast, RAM can be as fast as 5766 MB/s vs 477 MB/s for an SSD.[20]



Comments

Popular posts from this blog

Truecaller

Capacitors