Fingerprint
A fingerprint in its narrow sense is an impression left by the friction ridges of a human finger.[1] The recovery of fingerprints from a crime scene is an important method offorensic science. Fingerprints are easily deposited on suitable surfaces (such as glass or metal or polished stone) by the natural secretions of sweat from the eccrine glandsthat are present in epidermal ridges. These are sometimes referred to as "Chanced Impressions".
In a wider use of the term, fingerprints are the traces of an impression from the friction ridges of any part of a human or other primatehand. A print from the sole of the foot can also leave an impression of friction ridges.
Deliberate impressions of fingerprints may be formed by ink or other substances transferred from the peaks of friction ridges on the skin to a relatively smooth surface such as a fingerprint card.[2] Fingerprint records normally contain impressions from the pad on the last joint of fingers and thumbs, although fingerprint cards also typically record portions of lower joint areas of the fingers.
Human fingerprints are detailed, nearly unique, difficult to alter, and durable over the life of an individual, making them suitable as long-term markers of human identity. They may be employed by police or other authorities to identify individuals who wish to conceal their identity, or to identify people who are incapacitated or deceased and thus unable to identify themselves, as in the aftermath of a natural disaster. Fingerprint analysis, in use since the early 20th century, has led to many crimes being solved.[3] This means that many criminals consider glovesessential.[4][5] In 2015, the identification of sexby use of a fingerprint test has been reported.[6][7]
Biology
A friction ridge is a raised portion of theepidermis on the digits (fingers and toes), the palm of the hand or the sole of the foot, consisting of one or more connected ridge units of friction ridge skin.[1] These are sometimes known as "epidermal ridges" which are caused by the underlying interface between the dermal papillae of the dermis and the interpapillary (rete) pegs of the epidermis. These epidermal ridges serve to amplify vibrations triggered, for example, when fingertips brush across an uneven surface, better transmitting the signals tosensory nerves involved in fine texture perception.[8] These ridges may also assist in gripping rough surfaces and may improve surface contact in wet conditions.[9]
Types
Before computerization, manual filing systems were used in large fingerprint repositories. Manual classification systems were based on the general ridge patterns of several or all fingers (such as the presence or absence of circular patterns). This allowed the filing and retrieval of paper records in large collections based on friction ridge patterns alone. The most popular systems used the pattern class of each finger to form a key (a number) to assist lookup in a filing system. Classification systems include the Roscher system, the Juan Vucetich system, and the Henry Classification System. The Roscher system was developed in Germany and implemented in both Germany and Japan, the Vucetich system (developed by a Croatian-born Buenos Aires Police Officer) was developed in Argentina and implemented throughout South America, and the Henry system was developed in India and implemented in most English-speaking countries.[10]
In the Henry system of classification, there are three basic fingerprint patterns: loop, whorl, and arch,[11] which constitute 60–65%, 30–35%, and 5% of all fingerprints respectively.[citation needed] There are also more complex classification systems that break down patterns even further, into plain arches or tented arches,[10] and into loops that may be radial or ulnar, depending on the side of the hand toward which the tail points. Ulnar loops start on the pinky-side of the finger, the side closer to the ulna, the lower arm bone. Radial loops start on the thumb-side of the finger, the side closer to the radius. Whorls may also have sub-group classifications including plain whorls, accidental whorls, double loop whorls, peacock's eye, composite, and central pocket loop whorls.[10]
Other common fingerprint patterns include the tented arch, the plain arch, and the central pocket loop.
The system used by most experts, although complex, is similar to the Henry System of Classification. It consists of five fractions, in which R stands for right, L for left, i for index finger, m for middle finger, t for thumb, r for ring finger and p(pinky) for little finger. The fractions are as follows: Ri/Rt + Rr/Rm + Lt/Rp + Lm/Li + Lp/Lr. The numbers assigned to each print are based on whether or not they are whorls. A whorl in the first fraction is given a 16, the second an 8, the third a 4, the fourth a 2, and 0 to the last fraction. Arches and loops are assigned values of 0. Lastly, the numbers in the numerator and denominator are added up, using the scheme:
- (Ri + Rr + Lt + Lm + Lp)/(Rt + Rm + Rp + Li + Lr)
and a 1 is added to both top and bottom, to exclude any possibility of division by zero. For example, if the right ring finger and the left index finger have whorls, the fractions would look like this:
- 0/0 + 8/0 + 0/0 + 0/2 + 0/0 + 1/1, and the calculation: (0 + 8 + 0 + 0 + 0 + 1)/(0 + 0 + 0 + 2 + 0 + 1) = 9/3 = 3.
Using this system reduces the number of prints that the print in question needs to be compared to. For example, the above set of prints would only need to be compared to other sets of fingerprints with a value of 3.[12]
Dactyloscopy
Fingerprint identification, known as dactyloscopy,[13] or hand print identification, is the process of comparing two instances of friction ridge skin impressions (see Minutiae), from human fingers or toes, or even the palm of the hand or sole of the foot, to determine whether these impressions could have come from the same individual. The flexibility of friction ridge skin means that no two finger or palm prints are ever exactly alike in every detail; even two impressions recorded immediately after each other from the same hand may be slightly different. Fingerprint identification, also referred to as individualization, involves an expert, or anexpert computer system operating underthreshold scoring rules, determining whether two friction ridge impressions are likely to have originated from the same finger or palm (or toe or sole).
An intentional recording of friction ridges is usually made with black printer's ink rolled across a contrasting white background, typically a white card. Friction ridges can also be recorded digitally, usually on a glass plate, using a technique called Live Scan. A "latent print" is the chance recording of friction ridges deposited on the surface of an object or a wall. Latent prints are invisible to the naked eye, whereas "patent prints" or "plastic prints" are viewable with the unaided eye. Latent prints are often fragmentary and require the use of chemical methods, powder, or alternative light sources in order to be made clear. Sometimes an ordinary bright flashlight will make a latent print visible.
When friction ridges come into contact with a surface that will take a print, material that is on the friction ridges such as perspiration, oil, grease, ink or blood, will be transferred to the surface. Factors which affect the quality of friction ridge impressions are numerous. Pliability of the skin, deposition pressure, slippage, the material from which the surface is made, the roughness of the surface and the substance deposited are just some of the various factors which can cause a latent print to appear differently from any known recording of the same friction ridges. Indeed, the conditions surrounding every instance of friction ridge deposition are unique and never duplicated. For these reasons, fingerprint examiners are required to undergo extensive training. The scientific study of fingerprints is called dermatoglyphics.
Types
Exemplar
Exemplar prints, or known prints, is the name given to fingerprints deliberately collected from a subject, whether for purposes of enrollment in a system or when under arrest for a suspected criminal offense. During criminal arrests, a set of exemplar prints will normally include one print taken from each finger that has been rolled from one edge of the nail to the other, plain (or slap) impressions of each of the four fingers of each hand, and plain impressions of each thumb. Exemplar prints can be collected usinglive scan or by using ink on paper cards.
Latent
Although the word latent means hidden or invisible, in modern usage for forensic science the term latent prints means any chance or accidental impression left by friction ridge skin on a surface, regardless of whether it is visible or invisible at the time of deposition. Electronic, chemical and physical processing techniques permit visualization of invisible latent print residues whether they are from natural sweat on the skin or from a contaminant such as motor oil, blood, ink, paint or some other form of dirt. The different types of fingerprint patterns, such as arch, loop and whorl, will be described below.
Latent prints may exhibit only a small portion of the surface of a finger and this may be smudged, distorted, overlapped by other prints from the same or from different individuals, or any or all of these in combination. For this reason, latent prints usually present an "inevitable source of error in making comparisons", as they generally "contain less clarity, less content, and less undistorted information than a fingerprint taken under controlled conditions, and much, much less detail compared to the actual patterns of ridges and grooves of a finger."[14]
Patent
Patent prints are chance friction ridge impressions which are obvious to the human eye and which have been caused by the transfer of foreign material from a finger onto a surface. Some obvious examples would be impressions from flour and wet clay. Because they are already visible and have no need of enhancement they are generally photographed rather than being lifted in the way that latent prints are. An attempt to preserve the actual print is always made for later presentation in court, and there are many techniques used to do this. Patent prints can be left on a surface by materials such as ink, dirt, or blood.
Plastic
A plastic print is a friction ridge impression left in a material that retains the shape of the ridge detail. Although very few criminals would be careless enough to leave their prints in a lump of wet clay, this would make a perfect plastic print.[15] Commonly encountered examples are melted candle wax, putty removed from the perimeter of window panes and thick grease deposits on car parts. Such prints are already visible and need no enhancement, but investigators must not overlook the potential that invisible latent prints deposited by accomplices may also be on such surfaces. After photographically recording such prints, attempts should be made to develop other non-plastic impressions deposited from sweat or other contaminants.
Electronic recording
There has been a newspaper report of a man selling stolen watches sending images of them on a mobile phone, and those images included parts of his hands in enough detail for police to be able to identify fingerprint patterns.[16]
Recent studies found that the improving cameras with increasing resolution of smartphones might have a high impact on users’ security: The back-facing camera of a device can be used to capture an image of the user's index finger, which on smartphones using biometric means of authentication is often used to authenticate a user against the smartphone.[17]
At the 31st Chaos Communication Congress, hardware hacker starbug presented howDSLRs with high resolution and equipped with a long focus lens can be used to capture images of hands, or more specifically, fingers in order to use them for spoofing.[18]
Footprints
Friction ridge skin present on the soles of the feet and toes (plantar surfaces) is as unique in its ridge detail as are the fingers and palms (palmar surfaces). When recovered at crime scenes or on items of evidence, sole and toe impressions can be used in the same manner as finger and palm prints to effect identifications.[citation needed] The footprints of infants, along with the thumb or index finger prints of mothers, are still commonly recorded in hospitals to assist in verifying the identity of infants. It is not uncommon for military records of flight personnel to include barefoot inked impressions. Friction ridge skin protected inside flight boots tends to survive the trauma of a plane crash (and accompanying fire) better than fingers.
Capture and detection
Live scan devices
Fingerprint image acquisition is considered to be the most critical step in an automatedfingerprint authentication system, as it determines the final fingerprint image quality, which has a drastic effect on the overall system performance. There are different types of fingerprint readers on the market, but the basic idea behind each is to measure the physical difference between ridges and valleys.
All the proposed methods can be grouped into two major families: solid-state fingerprint readers and optical fingerprint readers. The procedure for capturing a fingerprint using a sensor consists of rolling or touching with the finger onto a sensing area, which according to the physical principle in use (optical, ultrasonic, capacitive or thermal) captures the difference between valleys and ridges. When a finger touches or rolls onto a surface, the elastic skin deforms. The quantity and direction of the pressure applied by the user, the skin conditions and the projection of an irregular 3D object (the finger) onto a 2D flat plane introduce distortions, noise and inconsistencies in the captured fingerprint image. These problems result in inconsistent and non-uniform irregularities in the image.[20]During each acquisition, therefore, the results of the imaging are different and uncontrollable. The representation of the same fingerprint changes every time the finger is placed on the sensor plate, increasing the complexity of any attempt to match fingerprints, impairing the system performance and consequently, limiting the widespread use of this biometric technology.
In order to overcome these problems, as of 2010, non-contact or touchless 3D fingerprint scanners have been developed.[21][22]Acquiring detailed 3D information, 3D fingerprint scanners take a digital approach to the analog process of pressing or rolling the finger. By modelling the distance between neighboring points, the fingerprint can be imaged at a resolution high enough to record all the necessary detail.[23]
Scanning dead or unconscious people
Placing the hand of a dead or unconscious person on a scanner to gain unauthorized access has become a common plot device. However, a MythBusters episode revealed that this doesn't work (at least with the scanners available to the program). But Adam Savageand Jamie Hyneman found a way to convert fingerprints lifted from the hand to a photographic form that the sensor would accept. For obvious reasons, they refuse to reveal the technique.
Latent detection
In the 1930s criminal investigators in theUnited States first discovered the existence of latent fingerprints on the surfaces of fabrics, most notably on the insides of gloves discarded by perpetrators.[24]
Since the late nineteenth century, fingerprint identification methods have been used by police agencies around the world to identify suspected criminals as well as the victims of crime. The basis of the traditional fingerprinting technique is simple. The skin on the palmar surface of the hands and feet forms ridges, so-called papillary ridges, in patterns that are unique to each individual and which do not change over time. Even identical twins (who share their DNA) do not have identical fingerprints. The best way to render latent fingerprints visible, so that they can be photographed, can be complex and may depend, for example, on the type of surfaces on which they have been left. It is generally necessary to use a ‘developer’, usually a powder or chemical reagent, to produce a high degree of visual contrast between the ridge patterns and the surface on which a fingerprint has been deposited.
Developing agents depend on the presence of organic materials or inorganic salts for their effectiveness, although the water deposited may also take a key role. Fingerprints are typically formed from the aqueous-based secretions of the eccrine glands of the fingers and palms with additional material from sebaceous glands primarily from the forehead. This latter contamination results from the common human behaviors of touching the face and hair. The resulting latent fingerprints consist usually of a substantial proportion of water with small traces of amino acids and chlorides mixed with a fatty, sebaceous component which contains a number of fatty acids and triglycerides. Detection of a small proportion of reactive organic substances such as urea and amino acids is far from easy.
Fingerprints at a crime scene may be detected by simple powders, or by chemicals applied in situ. More complex techniques, usually involving chemicals, can be applied in specialist laboratories to appropriate articles removed from a crime scene. With advances in these more sophisticated techniques, some of the more advanced crime scene investigation services from around the world were, as of 2010, reporting that 50% or more of the fingerprints recovered from a crime scene had been identified as a result of laboratory-based techniques.
Laboratory techniques
Although there are hundreds of reported techniques for fingerprint detection, many of these are only of academic interest and there are only around 20 really effective methods which are currently in use in the more advanced fingerprint laboratories around the world.
Some of these techniques, such as ninhydrin,diazafluorenone and vacuum metal deposition, show great sensitivity and are used operationally. Some fingerprint reagents are specific, for example ninhydrin or diazafluorenone reacting with amino acids. Others such as ethyl cyanoacrylatepolymerisation, work apparently by water-based catalysis and polymer growth. Vacuum metal deposition using gold and zinc has been shown to be non-specific, but can detect fat layers as thin as one molecule.
More mundane methods, such as the application of fine powders, work by adhesion to sebaceous deposits and possibly aqueous deposits in the case of fresh fingerprints. The aqueous component of a fingerprint, whilst initially sometimes making up over 90% of the weight of the fingerprint, can evaporate quite quickly and may have mostly gone after 24 hours. Following work on the use of argon ion lasers for fingerprint detection,[25] a wide range of fluorescence techniques have been introduced, primarily for the enhancement of chemically developed fingerprints; the inherent fluorescence of some latent fingerprints may also be detected. Fingerprints can for example be visualized in 3D and without chemicals by the use of infrared lasers.[26]
A comprehensive manual of the operational methods of fingerprint enhancement was last published by the UK Home Office Scientific Development Branch in 2013 and is used widely around the world.[27]
Research
Disappearance of children's latent prints
In 1995, researchers at the Oak Ridge National Laboratory, at the instigation of Detective Art Bohanan of the Knoxville Police Department, discovered that children's fingerprints are considerably more short-lived than adult fingerprints.[32] The rapid disappearance of children's fingerprints was attributed to a lack of the more waxy oils that become present at the onset of puberty. The lighter fatty acids of children's fingerprints evaporate within a few hours. As of 2010, researchers at Oak Ridge National Laboratory are investigating techniques to capture these lost fingerprints.
Comments
Post a Comment